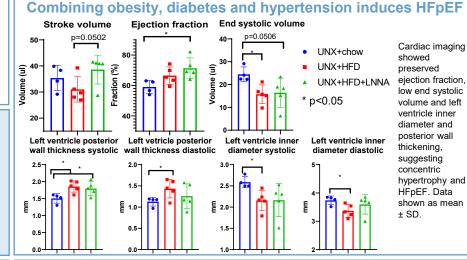
Cardiac damage in DKD/CKD mouse model resembles HFpEF and can be reduced by Standard-of-care treatment

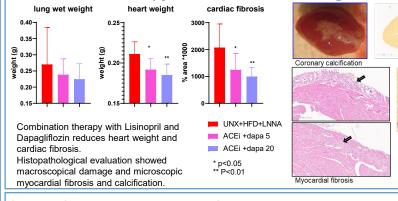
<u>Arianne van Koppen¹</u>, Romer A. Gonzalez-Villalobos², Andrea R. Nawrocki², Simon Hinke², Tri Q. Nguyen³, Amelie Dendooven⁴, Ingeborg Bajema⁵, Harry van Goor⁵, Karen Tseng⁶, Wei-Chan Hsu⁶, Aswin Menke¹, Elsbet Pieterman¹, Anke M. Smits⁷, Matt Breyer², Reinout Stoop¹

1 Department of Metabolic Health Research, TNO Leiden, The Netherlands. 2 Janssen Pharmaceuticals, Boston, United States 3 UMCU, Utrecht, The Netherlands, 4 UZA, Antwerp and UZ Ghent, Belgium, 5 UMCG Groningen, The Netherlands, 6 BPM, Taiwan, 7 LUMC, the Netherlands.

Introduction

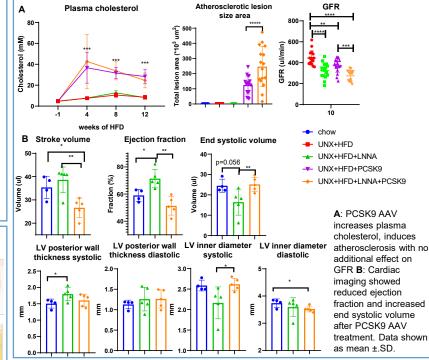

Cardiovascular damage is the major cause of death in CKD. TNO developed a diet-induced hypertension-accelerated DKD/CKD model resembling cardiovascular-kidney-metabolic syndrome including obesity, diabetes and hypertension and allows the study how the different components of this syndrome contribute to the development of cardiac damage.

Aim


The aim of this study was 1) to functionally characterize cardiac damage in TNO's DKD/CKD model 2) to determine efficacy of standard-of-care combination therapy of a low dose of Lisinopril followed by on-top-off Dapagliflozin treatment on cardiac histopathology and 3) to induce dyslipidemia to resemble the cardiovascular-kidney-metabolic syndrome using an AAV-PCSK9 gain of function mutation injection.

Methods

- Male KKAy mice underwent uninephrectomy (UNX). After recovery, mice received high fat diet (HFD) with or without the vasoconstrictor LNNA (50mg/L) for 16 weeks. In the standard-of-care intervention group, at wk 4 Lisinopril (2.5 mg/kg/day) was started. At week 8 Dapagliflozin (5 and 20 mg/kg/day). 1 group of mice received AAV-mPCSK9 (gain of function mutation) injection which reduces liver LDL receptor levels leading to high circulating cholesterol and increased susceptibility to atherosclerosis. At week 12, a subset of mice underwent cardiac imaging. GFR was measured using a transdermal measurement system.
- Pathology assessment includes quantitatively scoring of fibrosis using image analysis.


Combination therapy reduces cardiac damage

Contact information: arianne.vankoppen@tno.nl

innovation for life

Conclusions

TNO's translational DKD/CKD mouse model with UNX+HFD and LNNA exhibits features of HFpEF. Cardiac damage is reduced by combination therapy with a low dose of Lisinopril and Dapagliflozin. When inducing dyslipidemia the heart develops HFrEF. This shows the usability of the KKAy DKD/CKD mouse model for cardiac efficacy studies.