Flux analysis using ¹⁴C and AMS

Martine Morrison

Metabolic flux

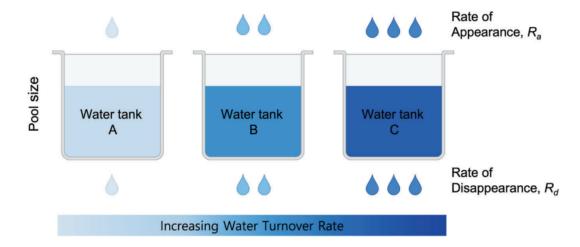
- Measurement of metabolite concentrations does not tell full story of (disease)biology
 - Concentrations and fluxes do not reliably align
- Metabolic flux analysis
 - Flow of metabolites through a pathway
 - Provides mechanistic understanding of pathway activity
 - Indicator/biomarker of disease state
 - Drug development (which process to target)

Metabolomics

→ measures concentration

→ probes flux

Flux increases with car density (concentration) until traffic slows


but low flux

Jang, Chen & Rabinowitz, Cell 2018

Metabolic flux

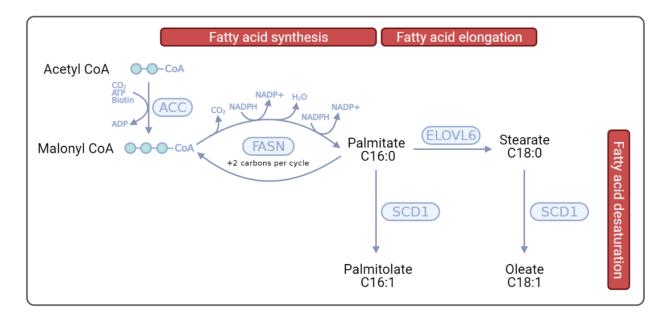
- Everything in the body turns over at varying rates to achieve overall "dynamic" homeostasis
 - Static (snapshot) information does not reveal the dynamic nature of in vivo metabolism
- A change in pool size (concentration) of any molecule:
 - Result of imbalance between its rates of appearance and disappearance
- Pool size (concentration) can be the same at different rates of appearance and disappearance

¹⁴C microtracer approach for flux analysis

- AMS technology can be used to measure metabolic fluxes with very high sensitivity
 - Analysis of ¹⁴C => much lower natural abundance than other commonly used isotopes (=lower background)
 - Analysis with AMS is extremely sensitive
- Advantages:
 - Microtracer use → no disturbance of pathway by adding large amounts of precursor
 - Extremely sensitive analysis → can be used for pathways/processes that cannot otherwise be measured
- Low-dose radioactivity can be applied in humans in early clinical testing stages

Isotopes commonly used in biological research

	Common Stable	Rare Stable	Very rare Radioactive
Hydrogen	¹ H Protium (99.985)	² H Deuterium (0.015)	3H Tritium $(< 10^{-16})$
Carbon	12 C (98.892)	13 C (1.108)	(Trace)
Oxygen	16 0 (99.763)	¹⁸ O/ ¹⁷ O (0.02/ 0.037)	11 _{O*}

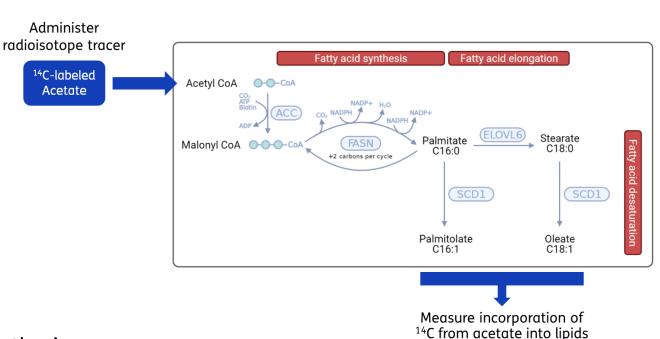

(%) natural abundance = amount of isotope occurring naturally in the atmosphere $\ensuremath{\text{(\%)}}$

*No long-lived radioisotope

De novo lipogenesis

- De novo lipogenesis (DNL) is an important metabolic pathway in which excess carbohydrates are converted into fatty acids. DNL is strongly regulated by nutritional status (fasted/fed) and macronutrient composition of the diet.
- Deregulation of the DNL pathway is associated with diverse pathological conditions:
 - Metabolic anomalies such as obesity, insulin resistance, non-alcoholic fatty liver disease
 - Cancer
 - Various viral infections

De novo lipogenesis: flux analysis

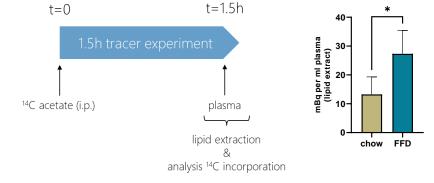

De novo lipogenesis (DNL) flux analysis:

- Administer ¹⁴C acetate
- Measure incorporation in lipids

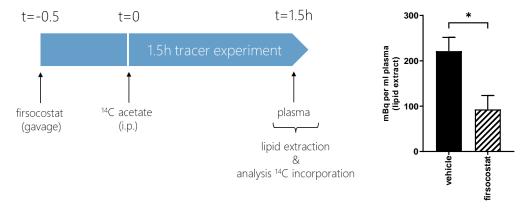
Proof of concept experiments

- Ldlr-/-.Leiden MASH mouse
- Ex vivo liver perfusion system

Using same experimental setup → cholesterol synthesis

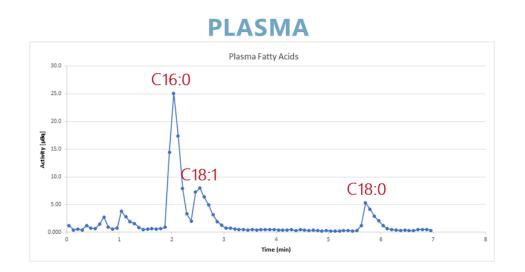


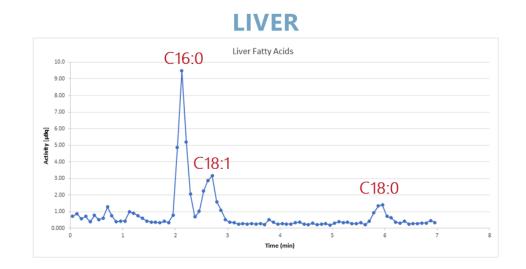
De novo lipogenesis


¹⁴C from acetate is incorporated into lipid fraction in Ldlr-/-.Leiden MASH mice

Ldlr-/-.Leiden MASH model

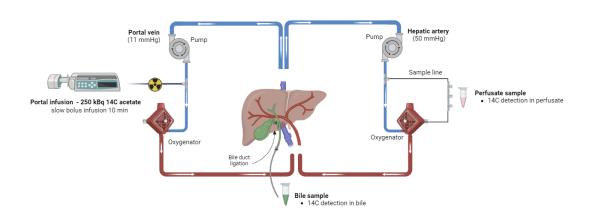
¹⁴C incorporation in lipid fraction is increased in Ldlr-/-.Leiden mice with MASH (FFD) relative to chow.

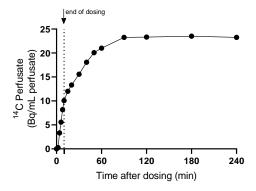


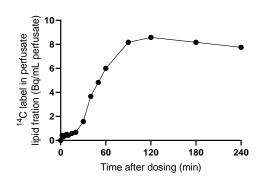

DNL inhibitor firsocostat (inhibits ACC), strongly reduces ¹⁴C incorporation in plasma lipid fraction as expected.

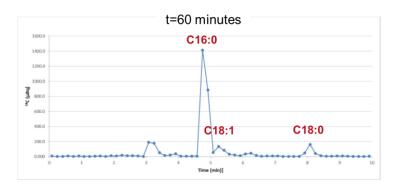
De novo lipogenesis

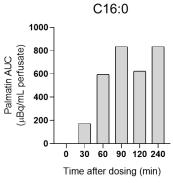
¹⁴C fatty acids in plasma and liver reflect de novo lipogenesis activity

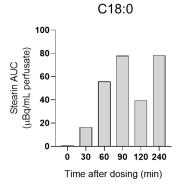


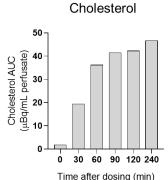

Fatty acid profiling analysis (LC/MS) combined with AMS enrichment analysis showed that the ¹⁴C signal from acetate is predominantly found in palmitate (C16:0, the primary end product of DNL) and in lesser amounts also in fatty acids that result from further processing of palmitate (C18:0 and C18:1) thus confirming that the observed incorporation of ¹⁴C from acetate into the lipid fraction of plasma and liver is indeed a reflection of DNL.

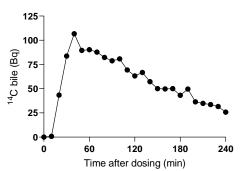



De novo lipogenesis: ex vivo liver perfusion


¹⁴C from acetate is incorporated into lipid fraction, fatty acids, cholesterol and bile in ex vivo liver







Other application examples (ongoing work)

Preclinical proof of concept studies

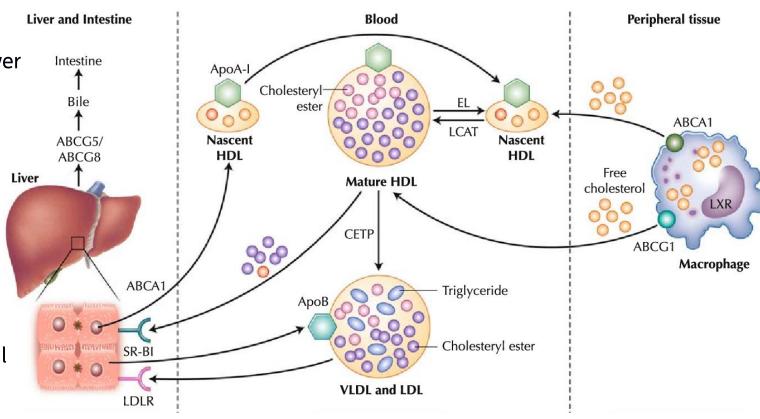
- HDL functionality / reverse cholesterol transport
- Muscle protein synthesis & breakdown (combined ¹⁴C and D₂O analysis)

First clinical demonstrator

Glucose metabolism (DNL, conversion to fructose)

HDL functionality

Reverse cholesterol transport:


- HDL lipoproteins clear cholesterol from peripheral tissues and return it to the liver to allow its excretion via bile
- Lowers CVD risk

CETP transfers cholesterol from HDL to (V)LDL particles (return to periphery)

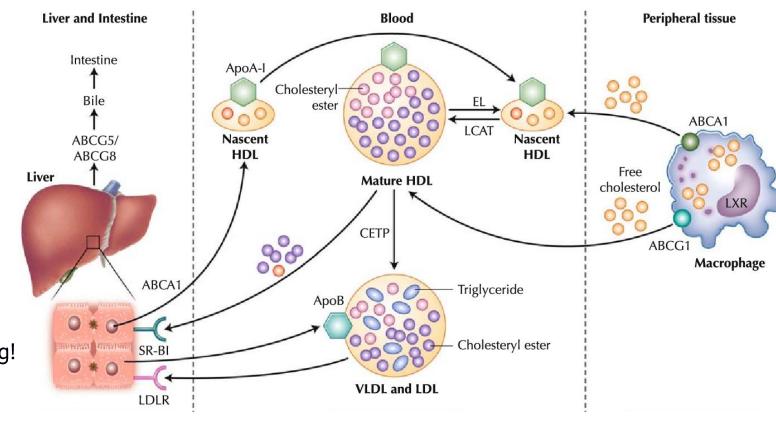
Increases CVD risk

It was long thought that <u>amount</u> of HDL cholesterol was main determinant of CVD risk, now known that <u>functionality</u> is critical

Functionality can be assessed by flux approach

HDL functionality: flux analysis

Administer ¹⁴C-cholesterol nanoparticles


Taken up by vascular macrophages

Measurement of ¹⁴C-cholesterol in:

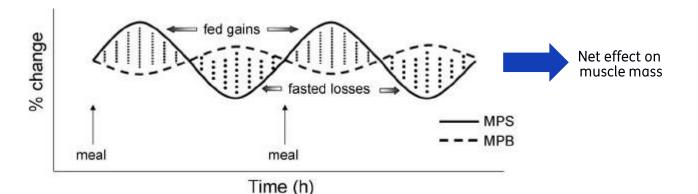
- Plasma HDL
- Plasma (V)LDL
- Liver
- Feces

Applied in preclinical study

Analyses ongoing, first results promising!

Muscle protein turnover

Imbalance in protein turnover:

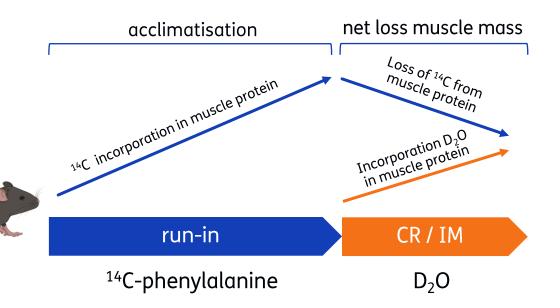

- Reduced muscle protein synthesis
- Increased muscle protein breakdown

Muscle atrophy:

- Loss of muscle mass
- Associated with increased adverse outcomes
- Caused by: immobilisation (e.g. hospital admission), ageing, obesity, cancer (cachexia)

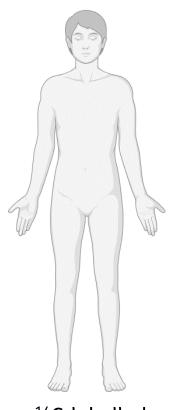
For design & mechanistic understanding of treatments: need to know effects on turnover

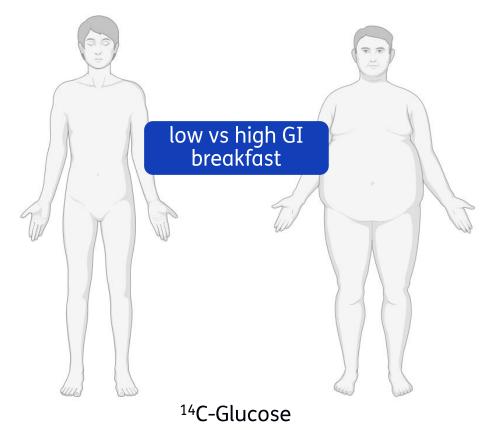
Can be assessed by flux approach



Muscle protein turnover: flux analysis

Flux analysis of muscle protein turnover:


- Combined ¹⁴C and D₂O approach
- Allows assessment of synthesis and breakdown in same experiment
- Applied in preclinical study (muscle atrophy in caloric restriction & immobilisation model)
 - → data analysis ongoing



Clinical demonstrator

First clinical demonstrator for microtracer flux approach

¹⁴C-labelled low kcal sweetener

Low kcal sweetener (vs glucose reference):

- Caloric value (exhaled CO₂)
- Mass balance

Lean vs obese & high vs low GI breakfast

- Conversion glucose → fructose
- De novo lipogenesis from glucose
- Forearm glucose disposal (IR)

Also: plasma biobank from ¹⁴C-glucose labelled subjects → potential future analyses

